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Traditionally, finite element methods generate progressively higher order accurate

solutions by use of higher degree trial space bases for the weak statement construc-
tion. This invariably yields matrix equations of greater bandwidth thus increasing
implementational and computational costs. A new approach to designing high order,
defined here to exceed a third-order accurate method, has been developed and tested.
The systematic construction of progressively higher order spatial approximations
is achieved via a modified equation analysis, which allows one to clearly identify
appended terms appropriate for a desired accuracy order. The resulting “modified”
PDE is shown to be consistent with the Taylor Weak Statement (TWS) formulation.
It confirms the expected high order of spatial accuracy in TWS constructions and
provides a highly efficient dispersion error control mechanism whose application
is based on the specifics of the solution domain discretization and physics of the
problem. A distinguishing desirable property of the developed method is solution
matrix bandwidth containment, i.e., bandwidth always remains equal to that of the
linear basis (second-order) discretization. This permits combining the computational
efficiency of the lower order methods with superior accuracy inherentin higher order
approximations. © 2001 Academic Press

INTRODUCTION

Higher order methods can generate very accurate results for problems with smooth ¢
that is, solutions for which the physical domain is smoothly mapped onto the computatio
space. This is accomplished by increasing the degree of the trial space basis [27], w
invariably yields matrix equations of greater bandwidth. Thisincreases the implementatic
cost, but by lowering the truncation error can reduce the number of nodes needed to ol
a given accuracy numerical solution for smooth data.

Finite difference methods approximate partial derivative entries of a given PL
on an individual basis. The value of each derivative at a generic computational nod
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approximated by a linear combination of function values at the adjacent nodes. Cor
guently, coefficients of this combination are established by matching Taylor series coe
cients [34].

Using additional nodes for wider computational stencil permits a higher order accure
by introducing more unknowns into the approximation expression. Generalization of t
approach is provided by Pade or by compact finite difference schemes [22, 25].

Alternatively, a higher order approximation for select elliptic problem statements can
achieved using Hermitian type discretization methods [9] without adding additional pivo
points. In this case, nodal values of higher order derivatives are used to introduce n
coefficients in the stencil expressions, e.g.,

aQj-1+aQj +aQji1 + Qi ; +aQ] +aQj,; =0. @

Once stencil coefficients are determined by Taylor series analysis, solution matrix bandw
expansion is contained by expressing high-order derivatives via nodal function values.

Unless this transition can be enabled by the partial differential equation itself, the
lution matrix bandwidth must be expanded to accommodate the extra unknowns resul
from introducing nodal values of higher order derivatives into the stencil expression. H
again, a higher order approximation comes at a computational price of solving mat
equations of greater bandwidth. Of particular importance, this is clearly the case for
advection—diffusion equation, which does not provide a dependence between derivat
and corresponding function values, rendering Hermitian methods ineffective in reduc
computational cost.

Approximation can be further optimized by introducing additional theoretical consit
erations, suitable for a particular physical problem. Optimized compact finite differen
schemes [19, 33, 35] utilize Fourier analysis to achieve maximum resolution by minimizi
dispersive (phase) errors in the differencing approximation. Resolution of sharp bounad
layers in convection dominated problems, and shock-like discontinuities caused by Ic
nonlinearities, can be enhanced by promoting the scheme’s “monotonicity.”

Thus, the analysis of a normalized-variable diagram leads to the restrictions being pla
on time-averaged normalized face values of the solution resulting in the ULTIMAT
strategy [24] for modulating a numerical solution, which can be applied for arbitraril
high-order schemes. Similarly, comparison of relevant divided differences to select
locally smoothest stencil, as used on the reconstruction stage of the interpolation pre
dure described by Shu [32] for ENO and WENO type schemes, yields highly accur:
solutions.

Finite element methods proceed in a fundamentally different manner. The cornerst
of the theoretical development is the “weak form” formulation [3] requiring the measure
the error in the approximate solution to vanish in an integrated sense. Introduction of
solution domain discretization further replaces the continuous solution approximation w
its appropriate piecewise-continuous form, resulting in generation of the “weak stateme
extremum, a precise definition of the computational stencil expressions upon specifica
of suitable test and trial basis function sets.

A higher order of approximation is achieved by general or local embedding of high
degree interpolantsptrefinement, see [27]). Method performance can be enhanced |
“optimizing” test basis function sets leading to various Petrov—Galerkin approximatio
[5, 6].
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Optimalh — p finite element methods [27] use bilinear form symmetrization to deriv
problem specific test and trial functions. The existence of an accurate fine mesh solu
to a given problem is assumed, and the corresponding optimal test and trial functions
designed to match this solution at the nodes of a significantly coarser grid. This le
to the “extrasuperconvergence” result which allows foragposteriorierror estimate on
each of the finite elements of the solution domain discretization, yielding an adaptive m
refinement strategy.

Early Petrov—Galerkin methods [8, 13] introduced excessive amounts of diffusion i
the numerical solution, and SUPG methods [5] were designed to counter this probls
Extension of the Lax—Wendroff method [23], which uses the governing equation to can
error terms in time and space to a finite element formulation, led to development of
Taylor—Galerkin method of Donea [10], which was generalized as the Taylor weak staten
(TWS) by Baker and Kim [2]. Detailed investigation of the TWS method performance f
various multidimensional problems can be found in [6, 7].

Matrix/static condensation techniques, unique for finite element formulations, provi
another powerful tool for method optimization. The SGM method of Roy and Bak
[28, 29], and Galerkin methods with bubble functions [1], successfully use this approact
promote solution stability and monotonicity. Finite element methods specifically desigr
for shock-capturing were shown to significantly improve the method’s ability to resol
sharp solution discontinuities. Examples include discontinuous Galerkin methods [14]
a nonlinear element—-upstream weak statement (NEWS) algorithm [16, 17], that achie
accurate monotone solutions for various conservation law system forms.

Overall, upondiscretization of the solution domain, virtually all high-order methods res|
in matrix equations with larger bandwidths thus increasing the computational cost. S
wider stencils cannot be implemented at the boundaries, leading to a local loss of accul
especially in multidimensional cases, hence requiring additional theoretical considerat
Grid generation around complex geometries also becomes extremely complicated, sir
smooth grid is dictated by the design of high-order methods.

Recently, a method resolving this dilemma was developed and tested [21]. The the
provides high-order accurate solutions at no added computational cost, by retaining
solution matrix bandwidth of the second-order methods. This is potentially significant
simplifying multidimensional grid generation procedures necessary for the implementat
of high-order methods. The development utilizes the ideas of “modified” partial different
equation analysis of Warming and Hyett [36] (see also [31]) to derive the problem-spec
computational stencil coefficients appropriate for the desired order of accuracy. This all
for avoiding implementational difficulties encountered by Hermitian type methods.

The systematic construction of progressively higher order spatial approximations
achieved via a modified equation analysis, which allows one to clearly identify corre
tion terms appropriate for a desired accuracy order. The resulting perturbed PDE is sh
to be consistent with the Taylor Weak Statement formulation. It confirms the expected h
order of spatial accuracy in TWS constructions and provides a highly efficient dispers
error control mechanism whose application is based on the specifics of the solution dor
discretization and physics of the problem.

The present paper extends the developed formulation to benchmark problem applicat
forthe Navier—Stokes equations. The paper is organized as follows. It presents the theore
analysis for nonlinear advection—diffusion problems in one and two dimensions. Numer
simulations compare performance of the developed method to that of the linear and bilir
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basis Galerkin finite element formulations. Uniform mesh refinement convergence res
confirm the order of truncation error, correlated with an asymptotic error estimate, |
each method. The generated high-order TWS formulation is shown to require significar
fewer nodes to accurately resolve solution gradients for convection dominated proble
Benchmark problem tests for the incompressible Navier—Stokes equations complete
paper.

ONE-DIMENSIONAL STEADY-STATE FORMULATION

Consider the multidimensional advection—diffusion equation with the correspondi
Dirichlet and Neumann boundary conditions

L(q(x, 1)) = aq(a);’t) +f(X) - Vq(x,t) —eV-Vax,t) =0 in QeR"xR' (2)
g=0p On 9% 3

99
pr g(x) on 99 9Q1UIQ, =09, 4)

where viscosity and boundary datg(x), g, are given.
Model equation (2), rewritten for the one-dimensional steady-state case, becomes

dq(x) d’q
dx —S(X)w =0. (5)

f(q,x)

Assuming the existence of appropriate boundary conditions, the discrete weak stater
formulation is

W' = S([U + Dle{Qle) = S(A(, &)]e{Qle) = {0}, (6)

where Ule, [D]e, [Ale are the trial-test function specific matrix forms on the generic FE
domainSe.

A fully discrete equivalent of (6), obtained by assembling the element maitixdn
two adjacent elements, yields the generic stencil form

fi(@Qj-1+aQj+asQji1) — ¢j(@Qj_1+asQj + aQj4+1) =0 (7)

or
(fjas —egjay) Qj_1+ (fjax — ¢jas) Q) + (fjaz — gja) Q41 = 0. 8)

Here,a are the coefficients dependent on a specific choice of finite element trial and t
functions, andQ;_1, Q;, Qj+1 are the unknown nodal values of the approximate solutior
A genuine finite element formulation would require interpolation of functidrg, X)
ande(x), thus adding complexity to the stencil expression in (8). In the present analys
such interpolated functional expressions are replaced with their respective nodal va
f; ande;.
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Assuming a locally uniform mesh withx = h, which is sufficiently small, and writing
a Taylor series expansion at noflgields

h2 o hn
fi [(a+2+89)Q+ (83 —aDhQu + (s + a) > Qu+ (B —a) ) Q"
n=32

o0 hn
+(@+a) )y, FQ(H)] —¢j (a4 + a5+ 26) Q+ (8 — a)h Qs

n=42 "

h2 oo hn o hn
ll _ T om T om| —
+ (a5 + as) > Qxx + (a6 a4)n=§32n! Q +(ae+a4)n=§42n!Q 0, (9

whereQ replaceQ); for clarity.

Naturally, for (9) to approximate Eq. (5), tteg in (9) must satisfy the following con-
ditions:

ay+a+a3=0

1

a3—a1=H (10)

azt+a; =0

and
autas+a=0

ag—as=0 (11)
2

a6+a4:ﬁ'

Coefficient groupsds, a,, ag] and [ay, as, ag] are responsible for the second-order dis-
cretization of the first- and second-order derivatives, respectively, and conditions (10)
(11) must be satisfied independently of a particular approximation technique selecte
arrive at (8). Therefore,

agq(x
) _ a1Qj-1+aQj +a3Qj1
X
(12)
9%g(x)
o a1Qj-1+aQj +aQj1,
and coefficientsy are uniquely determined by solving (10) and (11),
1 1
a].:_ia a2=05 a3=7
2h 2h (13)
1 2 1
a4:pa %:_ﬁ’ %Zﬁ-

For the computational stencil coefficiemssatisfying (13), (9) becomes

fj Qxxx g Quxxxx
6 12

ijx_ngxx+h2( > +H.O.T.=0. (14)
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Rewriting (14) yields the convenient form

f Qxxx _ & Qxxxx

where f ande replacef; ande;, respectively.

Equation (15) represents an “infinite” order partial differential equation satisfied by tl
nodal numerical solutiofiQ} [34, 36]. We therefore can differentiate it repeatedly with
respect tox, thus expressing higher order derivatives present in (15), and then atter
to derive a second-order PDE (ODE in the one-dimensional steady-state case), wi
second-order approximation would result in a higher order approximation of the equat
to be solved. Obtaining this “perturbed” second-order ODE is the key to this theoreti
development, since any second-order ODE can be discretized on three nodes in the
dimensional case.

Assuming for simplicity the viscosity parameteis constant, differentiating (15) repeat-
edly with respect tax and neglecting high-order terms leads to

€Quxx = fxQx + fQux+ H.O.T. (16)
€Quxxx = TxxQx + fxQxx + fxQux + f Quxx+ H.O.T. (17)

Substituting (16) and (17) into (14) and neglecting the terms of the order greater thal
one obtains

ff f f2 f
fo_ngx+h2Qx (12; _1X2x> +h2Qxx <12€ - 6)() :0’ (18)
which represents the equation satisfied by the nodal approximate sduéind includes the
second-order error terms resulting from the selected second-order approximation. Sup
the original equation (5) is now replaced with the following continuous form:

fOx — e0ux — h%0x Fhe _ To) - h2qyx Lz _ K& =0. (19)
12¢ 12 122 6

The original equation is supplemented here by two correction terms, obtained by rever:
the signs on the second-order truncation error contributions in (18). Applying second-or
discretization, (12) and (13), to this “perturbed” ODE rather than to the original equatit
(5) would result in cancellation of the second-order truncation error terms consistent w
(18) and therefore provide a fourth-order accurate numerical solution to the original eq
tion. Since only first- and second-order derivatives are present in (19), its second-ol
discretization does not result in solution matrix bandwidth expansion. The fourth-orc
accurate numerical solution to the original equation (5) is therefore obtained at no ad
computational cost as compared to that of the second-order approximation.

It is important to note that for practical applications the viscosity paransateasually
small. Hence, for problems with smooth solution and data distributions, it is possible
neglect the terms of the order unity as compared to those of the ofdethiis reducing
(19) to

A h? f—z—o (20)
120 e T

qu — &0xx — hqu
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and combining the terms, the perturbed ODE becomes

aq  3°q h? _ 93 /. dq
0 " s 2 (1) —o 21
X Sax2 12¢  9x \ X 0 (21)

While numerical solution to (21). would lose its nominal fourth-order of accuracy, it ne
ertheless could retain the desirable stabilizing effects of high-order approximations. Ap
cability of this order of magnitude assumption must be carefully evaluated for particu
physical problems, since values of function derivatives could be much larger than thos
the function itself near points of discontinuity and sharp boundary layers. This assumptio
not used in the example advection—diffusion problems considered herein, but its suitab
for the Navier—Stokes equation class is discussed later in this paper.

With (19) resulting in a fourth-order accurate solution to the original equation (5), simil
development can be shown to yield the following sixth-order perturbed ODE, illustrated
the linearf (g, X) = u(x) case as

2 2 3
qu_SQXx_hqu<uux u“) — h?qyy ( ! 3) —h“qx( e S

12 12 12¢ 6 1802  720e3

 Usxxx UPUxx | Ulkxx hg Ui Uxxx |, Ul URUx o ut o
360 7202 ' 180 **\ 18 90 ' 72 ' 3602 7203/

(22)

Note, that the terms of the ordef remain unchanged from the fourth-order ODE, thus
allowing for recursive development of higher order approximations.

First consider a one-dimensional steady-state case for a constant valagity ui and
Dirichlet boundary conditions. Equation (2) is

_ da  dq)
L@OO) =u=g = e

q@0 =0 gq(1)=1 on 9. (24)

=0 in xe(01) (23)

Via the developed methodology, perturbed ODE (19) becomes

h2u?
- — — =0, 25
UQy — eQxx — Qxx 12¢ (25)

indicating that only the second-order derivative perturbation term is required to achiev
higher order numerical solution in this case.
The computational stencil expression (8) reduces to

u@1Qj_1+aQ; +aQjy1) —e(@Qj_1+asQj +asQj1)

h2u?2
- E(&Qj—l +a5Qj +aQj41) =0, (26)

where coefficients; are given in (13). Collecting the terms, the three node stencil is

_ 6heu 4 12:2 + h?u? Qs+ 12¢% 4-h2u? 0,
12ch? =t 6ch? :

6heu — 12:2 — h2u?
[ |Qua=o 27)

12¢h?
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With this linear case development now complete, one can proceed to the nonlin
Burger’s equation casd,(x, q) =q(x). The one-dimensional steady-state equation is no
of the form

d2q(x dg(x
CI()_q q(x)

a2 dx =0 in xe€(01), (28)

L@x) =
with boundary conditions
q® =1 q@=-1 (29)

The perturbed ODE form remains (19), with(x, q) replaced byq(x). Replacing con-
tinuous derivative expressions with their discrete counterparts via (12), the computatic
stencil (8) takes the homogeneous form

F = Q <_ szhl Qzlr;rl) 1 2}:?21 Qﬁ';l)
_h*Q; ( Qi1 Q1+1)2_ h*Qf (QJ 1 2Q; Qi+l>
12¢ 2h " 2n 12 \ h2  hz ' ne
h> / Qj1  Qju1) (Qj1 2Qj | Qju1) _
+4<_ on t 2h><h2 T T h2>_0' (30)

The nonlinear system of equations (30) is solved using Newton'’s iterative procedt
with tridiagonal Jacobian matrifdAC;_1, JAC;, JAC; 11} evaluated from (30) as

dF; 1
JAC 1 = anJ_1 = ~Surz (6Qjeh + 24¢? + h?Q; Qj_1
— h?Qj Qju1 +2Q7h? + 6Q;_s¢h) (31)
dF; 1
JAG; ZTQ]J- = —2g.pz (12Qj-12h — 12Q;41¢h — 96¢?
+h?Q%, — 2n?Q;_1Qj 1+ h*Q%,
+8h?Q; Q)1 — 24Q5h* + 8h?Q; Qj41) (32)
dF; 1
JACj1 = Wjjﬂ = Sz (6Qieh— 2462 + h?Qj Q1

— h?QjQj11 — 2Q%h? + 6Qj1ch). (33)

TWO-DIMENSIONAL STEADY-STATE FORMULATION

Model equation (2) rewritten for the two-dimensional steady-state case and veloc
u(x,y) = u(x, y)i + v(x, y)j becomes

gy | 9% y) 9q(x, y)
—u(x, y)%&y) —0 in xye (1) x(@O1). (34)

In accordance with the Galerkin bilinear basis two-dimensional weak statement formt
tion written on rectangular four-node element, a fully discrete equivalent of (34), obtain
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by assembling the element matrices on four adjacent elements sharing a common c
node, leads to the generic nine-node computational stencil

C1Qi—1j-1+CQij—1+C3Qiy1j-1+C4Qi_1j +CsQi
+C6Qiy1j +C7Qi—1j4+1+ Qi j+1+ CoQitaj41 = 0. (35)

Assuming a uniform square mesh wittx = Ay = h, which is sufficiently small, and
writing a Taylor series expansion at nodg yields (36) withQ replacingQ; j for clar-
ity. Equation (36) represents an infinite order partial differential equation satisfied by 1
numerical solution. Retaining only the terms of the order lower or equal than four yield:

(CL+C+C3+C4+C5+Cs+ C7 + Cg + Co) Q+NQy(—C1 + C3 — C4 + C5 — C7 + Co)
h2
+th(—Cl—Cg—03+C7+Cg+C9)+EQXX(01+03+C4+05+C7+C9)

h2
+ 5 Quy(CL+Co+Cat €7+ Ca+Ca) + h?Qyy(C1 — €3 — C7 + Co)

h3 h3
+€Qxxx(09 —C+C3— c7+c6—C4)+§nyy(09 —C—C3+Cr+C—C)

h3 3
+ EQxxy(CQ —C—C3+Cr)+ EQxyy(CQ —C+C—Cp)

h4 h4
+ ﬂQxxxx(CQ +C+C3+Cr+Cs+Ca) + ﬁnyyy(Csa +C+C3+Cr+Cg+C)

4 h4
+ B Qxxxy(Co + €1 — C3 — C7) + 0 Quxyyy(Co + €1 — C3 — C7)

h4
+ 7 QuyyCo+C+C+C)+HOT. =0 (36)

As shown by Kolesnikov and Baker [21], the necessary symmetrization of the selec
discretization is achieved via

9
ch =0
n=1

u
—C1+03—C4+05—C7+09=H

v
_C1_02_03+C7+08+C9:H

2e
Cl+C3+C4+Cﬁ+C7+09=—ﬁ

2¢
CLtCotCatCrtCetCo=—17 (37)

Ci—C—Cr+Co=0

C_U+v

Co 1= 6h

Cl=——

Co+C1 3Nz

u—v
C3—Cr=

6h ’
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which reduces (36) to

u u
UQy + v Qy — £ Qux — £Qyy + 2 L2y USnax ¥y, Uy
6 6 6 6
—h2e (Qixzxx + Qly;yy + QXg”) +H.O.T.=0. (38)

In concert with the theoretical developments of the previous chapters, one can r
differentiate (38) twice with respect toandy and neglecting higher order terms obtain

Uyx Qx 4 2Ux Qxx + U Qyxx + vxey + 2vx Qxy + vaxy = & Quxxx+ EQxxyy (39)
Uyy Qx + 2uy Qxy + UQxyy + vyyQy + 20y Qyy + vQyyy = £ Quxyy + €Qyyyy.  (40)

Similarly, differentiating (38) with respect toandy produces

Ux Qx + UQxx + vx Qy + vQxy = € Quxx + £ Qxyy (41)
Uy Qx + UQyy + vyQy + vQyy = £ Qxxy + €Qyyy. (42)

Substituting expressions (39—-42) into (36) leads to

vuy Q vu Q. vuy Q v2Q
UQx+UQy_8Qxx—5ny+h2< 1yzex+ 68Xy+ 1yzgy+ 128yy

he <UUXQX n U2 Qyx " uvy Qy B Uxx Qx UxQxx)

12¢ 12¢ 12¢ 12 6
o vxxQy  uxQxy  UyQx  UyQxy wvyyQy  vyQyy\
+h < 12 6 12 6 12 6 ) 0. (43)

which after reversing the sign on the truncation error terms yields the modified fourth-ort
perturbed PDE in the form

vuy Q vu Q. vuy Q v2Q
UQX+vQy_8Qxx_£ny_h2< 1)/28X + 68Xy+ 1)/28y+ 121;yy

(M Qo | unQy Qs _ b0

12¢ 12¢ 12¢ 12 6
2 vxxQy  vxQxy  UyyQx  UuyQuy  vyyQy  vyQyy)
h < 12 6 12 6 12 s )= (4

Again, note that for practical applications with smooth data and solution distributior
the 1/¢ terms dominate. Hence, neglecting high-order correction terms of the order of
the remaining terms can be combined. The perturbed PDE (44) is then conveniently re
in continuum vector-form

2

u~Vq—sV-Vq—1h—2£u-V(u~Vq):O. (45)

As before, discretization of perturbed equation (44) (consistent with (37)) will yield
fourth-order method because of the developed cancellation of the error terms. The pa
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derivatives of the orden? present in (44) can be discretized via any conventional secon
order FD/FV/FE method, since the error terms in their respective approximate express
on a uniform mesh will be of the ordéf. The following are used in this development:

1 1
Qx = _%Qi—l,j + %QH—LJ (46)
1 1
Qy = _%Qi,jfl"‘%Qi,Hl (47)
1 1 1 1
Qxy = RQifl,jfl - RQiJrl,jfl - WQPLJH + WQHLJH (48)
1 2 1
Qxx = ﬁQi—l,j _ﬁQi,j +ﬁQi+l,j (49)
1 2 1
Qyy = ﬁQi,jfl_in,j +ﬁQi,j+1- (50)

Indeed, all approximations satisfy the matrix bandwidth restriction requirement and sc
may be easily recognized as their one-dimensional counterparts. While the approxima
selection in (46-50) does not compromise the fourth-order accuracy of the method,
algorithm performance can be further optimized by customizing these discrete expressi

The theoretical approach developed herein for the advection—diffusion example pr
lems is directly applicable to the incompressible Navier—Stokes equation class as il
trated in the next section. Theory extension for the inviscid Euler equations is detai
in [20].

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS: Q@ — ¥ ALGORITHM

Navier—Stokes equation set governing two-dimensional flow of viscous incompressi
fluid is written as (see, for example, [3])

ou;
—l_0 (52)
3Xj
u 9 p bi
U4 s — o ~ =0 52
5+ 7 <u|u, + ol a”) = =0 (52)

wherepg is the constant density,; is the two-dimensional velocity vectds, is the body
force, p is pressureg;; is the Stokes stress tensor defined as

. (3u‘ + au,> , (53)

gij = ax. )
Re \ 0x; X

and nondimensional groups are defined as

UL

Re= v°° (54)
U2

Fr = —=. (55)

Lg
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The constant density restriction allows for introduction of the streamfunction—vortici
variable set/, w via
u=vy x ¢k (56)
w=vy xu-k, (57)

which recasts the original system into

ow 1,
E‘F(wak'V)w—ﬁeV w=0 (58)

V2 +w =0, (59)

with pressure being determined as a postprocessing operation via

2 2 2
2p—a? A 28‘”=o. (60)

Neglecting the body force contribution, writing (58, 59) in a component form and re
membering definitions (56, 57) yields the Navier—Stokes system in the form

ow ow ow 1 92w 1 92w
— +u— — - ———=0 61
at + X +v8y Redx2 Redy? (61)
2y 9%y
— =0 62
ax2 + 0y +w (62)
0
u= ¥ (63)
ay
oY
=— 64
V= (64)

Equation (61) is recognized as the unsteady advection—diffusion equation. Comple
of the high-order formulation for this problem class therefore rests on the correspond
development for the stream-function Poisson equation. Assuming existence of the ap
priate boundary conditions, generality of the developed theory readily provides a requi
extension. Here, one proceeds along a well-established design sequence.

Spatial discretization of (62) on a nine-node computational stencil results in

\Nii +CWi—gj_1+ Wi j_1+CaWiyr 1+ CaWi_yj + C5Y
+CeWis1j + CrWi—1 41+ CeWijr1+ CoWityj+1 =0. (65)
The approximation requirement as dictated by (36) and Taylor series expansion of (
is
9
> e =0
n=1

—C+C—C+C—C+C=0
—C—C—C3+Cr+C+C=0
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2
Cl+Cg+C4+C6+C7+C9=ﬁ

2
c1+c2+c3+c7+08+09:ﬁ (66)
Ci—C—C7+C=0

Cg—¢C =0

1o = !

Cg 1_3h2

C3—C7=0,

which results in
1 2 1 2 10
=, G=-—, GQ=—, CG=-—, C=——" 67
A= 2Tz BT “Tagp %7 T3 €7)
2 1 2 1

=25 O=c5 G=o5 G= 68
“=32 T en ®T e 6h? (68)

and reduces the corresponding truncation error expression to

h2 h? h?
® + Yxx + Pyy + 1—21//xxxx+ 1—21/fyyyy+ Elpxxyy—i- H.O.T.=0. (69)

Differentiating (69) byxx andyy, neglecting high-order terms, and taking the lineal
combination of the resulting expressions, yields

Yxxxx + Zl/fxxyy"‘ 1l’yyyy = —Wxx — Wyy. (70)

Substituting (70) into (69) and reversing the error term signs provides the desired fou
order accurate perturbed PDE in the form

%y 3%y h? [3%w 3w
—|—=+—1]=0. 71
ax2 = 9y? + 12 (ax2 + 8y2> (71)

The modified continuous system composed of four coupled equations written for fc
variablesw, ¥, U, v now is

dw 1 2Re
— Vo — —V - -Vow — -Vu-Vo)=0 72
at—i-u ®— o) 2u (u- Vo) (72)
h2
oy
u= — 74
W (74)
oy
= — 75
YT (75)

with pressure being determined via (60) as a postprocessing operation.
Note that the selected formulation for the corrected vorticity equation (72) is consist
with the continuum vector form (44). One therefore cannot expect the numerical solut
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to attain the design fourth-order of accuracy. Nevertheless, computational results sl
the remaining correction terms to retain the desirable stabilizing effects of the high-or
formulation.

RESULTS AND DISCUSSION

Asymptotic Convergence Estimates

Since an analytical solution is not generally available, the following analysis [3] is us
to confirm the predicted convergence rate of the developed methods. For the lead ter
the truncation series expansion given in the form

error ~ Ch (76)
and using
TN 4+ € = Texacr = TV? + V2, (77)
one can easily verify that
e = (222 (78)
and therefore
T2 Th=(2* - 12, 2= ATo? (79)

2k’

Here AT"2 = T2 — Th denotes the computed difference in the two approximate solt
tions. Selecting #og representation, the slope of the convergence curve should be

_ log(e"™) —log(e"/?™)  log(e"/M /e2M)
slope= log(h) —logth/2) log2 ’ (80)

whereM is the number of finite elements used in computing the solution.

One-Dimensional Advection—Diffusion

Convergence data computed for the derived methods are presented in the Tables | a
Table |1 lists data obtained for the scalar case (23) and Table Il for the nonlinear case (
All data were computed far = 0.1.

Computed slope values confirm Taylor series-predicted convergence rates of the
veloped methods. When compared to the exact sol@on= 0.75) = 0.0820433 in the
scalar cases(= 0.1), the fourth-order method evidences superior performance. Specifical
monotone and accurate results are obtained on a relatively coarse mesh. A tenfold r
refinement would be required for the second-order method to produce comparable res
This seemingly insignificant “third digit” observation will become extremely important ir
costly real-life computations.

Solution evolution for the linear advection—diffusion foe= 0.001 is shown in Fig. 1 with
number of node®node Presented are numerical solutions computed using fourth-ord
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TABLE |
Perturbed PDE Method. 1D Linear Advection—Diffusion,e = 0.1

Nnode Q(x=0.75) AQ Slope
(a) Fourth-order method
9 0.08280510 — —
17 0.08208770 0.0007174 —
33 0.08204605 0.00004165 4.107
65 0.0820434 0.00000255 4.03
129 0.08204337 0.00000012 441
(b) Second-order method
9 0.05324680 — —
17 0.07525270 0.02200590 —
33 0.08036900 0.00511630 2.105
65 0.08162610 0.00125700 2.025
129 0.081193910 0.00313000 2.006

and second-order methods. Even for this modest valde Galerkin linear basis solution
remains oscillatory in the boundary region for all considered discretizations. The we
known monotonicity constraint [11, 28] applied4e= 0.001 states that at least 500 nodes
are needed for Galerkin linear basis discretization to produce a nonoscillatory (monotc
solution.

In contrast, the fourth-order method solutions remain monotone independgnbdé
albeit overdiffused on the coarsKrfode= 21) mesh, in full agreement with high-order
method results reported by Fletcher [11]. While the coarse mesh solution is clearly over
fused, a reasonable 121-node discretization of the solution domain allows for the compu
of an acceptable solution. Further refinement results in a highly accurate monotone solt
for Nnode= 221.

Results computed for the Burger’s equation case are shown in Fige2£d.001. The
fourth-order accurate solutions are presented for various discretizations. Presented solu

TABLE Il
Perturbed PDE Method. 1D Burger's Equation,e =0.1

Nnode Q(=0.25) AQ Slope
(a) Fourth-order method
9 0.85629180 — —
17 0.86320770 0.00691590 —
33 0.86351750 0.00030980 4.48
65 0.86353430 0.00001680 4.205
129 0.86353536 0.00000106 3.987
(b) Second-order method
9 0.90590460 — —
17 0.87307980 0.03282480 —
33 0.86586460 0.00721520 2.185
65 0.86411420 0.00175040 2.044

129 0.86368005 0.00043415 2.012
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FIG. 1. Linear advection—diffusion, solution dependencéNmode ¢ = 0.001. High-order and GWS perfor-

mance comparison.

follow general trends observed for the linear case, highlighting continuity of the develor
theoretical approach. All solutions are monotone with highly accurate results obtained
sufficiently refined discretizations. The second-order method solution (not shown here)
divergent. In fact, continuing the iteration process (up to 50 iterations, not shown) does
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(f) 2** order method, Nnode=221

improve the solution, but rather exaggerates its divergent behavior.

Overall, computational results illustrate two main points. Namely, high-order metho
can achieve desirable error levels on coarser meshes, and for a given mesh, high-c
methods produce more accurate results. The developed theoretical approach allow:
exercising these advantages at no added computational cost, which is usually assoc

with solution matrix bandwidth expansion of high-order accurate methods.
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FIG. 2. Burgers equation. Fourth-order method solutions on uniform neesh).001.

Two-Dimensional Advection—Diffusion

Uniform mesh refinement results confirming predicted convergence rates of the develc
fourth-order method are shown in Table III.

All data were computed at the center node of the solution domeair0.5, y = 0.5. For

the purpose of establishing the convergence rate of the method, the linear problem witt
exact boundary conditions

gl =1 g0y =qx0=0 (81)

TABLE I
Perturbed PDE Method. 2D Linear Advection—Diffusion.
Fourth-Order Convergence Data

@e=1
Nnode Q AQ Slope
3x3 0.14254288 — —
5x5 0.14253726 0.000005626 —
9x9 0.14253697 0.000000287 4.29
17 x 17 0.14253695 0.000000017 4.08
(b)e =01
Nnode Qx 10° AQ x10° Slope
9x9 0.468156 — —
17 x 17 0.448714 0.01944 —
33x 33 0.447985 0.00073 4.74
65 x 65 0.447945 0.00004

4.19
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(¢) Nnode = 51 x 51

FIG. 3. Linear advection—diffusion, uniform mesh, solution dependendsrmue ¢ = 0.005.

e’ —1 e? —1
q(X, 1) = 1 q(l’ y) = 1 1 (82)

were considered in the mesh refinement study.

Numerical results in Fig. 3 present solutions to the linear problem computed on seve
uniform discretizations for = 0.005. The boundary conditions (82) were replaced witt
the adiabatic conditions

aq(x.1) _ aqly)
on an

The fourth-order method yields monotone results on all discretizations. An inaccure
overdiffused solution on a coarse $111 grid is significantly improved after a modest mesh
refinement (Fig. 3b). Further mesh refinement produces an excellent solution on%151
node mesh.

0. (83)



TAYLOR WEAK STATEMENT FORMULATION 567

Driven-Cavity Benchmark Solutions

The driven-cavity problem is a well-known validation benchmark problem [3, 7, 30, 37
The solution domain is the unit square, with the lid defined to slide across the domain
uniform velocity.

The high-order formulation developed for the incompressible Navier—Stokes vorticit
streamfunction formulation was shown to incorporate the fundamentals of the classic T
analysis. The correction error terms necessary for the appropriate order of accuracy
combined via vector analysis to provide fhiéerm of the TWS formulation. The theoretical
analysis results in a highly efficient dispersion error control mechanism whose applicatio
based on the specifics of the solution domain discretization and physics of the problem.
this theoretically sound control mechanism that distinguishes this development, allowing
selective application of optimal amounts of diffusion for maximum accuracy as dictated
the high-order accuracy formulation. Itis importantto note that unlike the TWS formulatio
present development also includes the reformulated Poisson streamfunction equation
integral part of a high-order accurate solution process.

Numerical results for a range of Reynolds numbers are shown in Figs. 4 and 5. Comp:
are GWS, TWS, and newly developed high-order method formulations. For a modest ve
of Re = 1000 all solutions are of reasonable engineering quality, with GWS vortici
solution showing some oscillatory behavior. Oscillations are significantly reduced via |
TWS g-term application and are nonexistent on the fourth-order method solution.

The picture changes significantly as the Reynolds number is increased to 3000.
shown in Fig. 5, GWS and TWS solutions are unacceptably polluted by oscillations, w
high-order formulation providing a excellent monotone solution on a rather coarse loce
uniform mesh. This locally uniform discretization is quantized viadRSE notation as
X1:[33(0. 8R1.0.02 16R1.0 .98 8R1.0 1)] and X2:33(0. 20R1.0 .98 12R1.0 1)], which
reads for X1: “from 0 to 0.02 place 8 nodes with the progression ratio of 1.0 (uniformly
from 0.02 to 0.98 uniformly place 16 nodes and finally from 0.98 to 1.0 uniformly place
nodes.” Similarly, notation for X2 reads: “from 0 to 0.98 uniformly place 20 nodes, fror
0.98 to 1.0 uniformly place 12 nodes.”

The numerical results illustrate a definite advantage of theoretically predicted selec
application of numerical diffusion provided by the error correction terms over the ent
solution domain. Note that packing more nodes at the boundaries of the solution don
would result in monotone solutions for both GWS and TWS formulations. Of cours
the price one pays is the information lost on the interior of the solution domain with t
discretization nodes migrating to the boundaries.

The importance of considering a high-order formulation consisting of the perturbed PL
for both vorticity and streamfunction equations in illustrated in Figs. 6-8. Figures 6 a
7 show the results obtained when the high-order formulation is only used for the vortic
equation while the streamfunction equation remains (59). The solution is comparabls
that of the TWS method in Fig. 5. In contrast, Fig. 8 shows the solution computed wh
only the streamfunction equation is modified with vorticity being calculated via the origin
equation. One may conclude that for this particular problem class, high-order modificat
of the streamfunction equation is more significant as compared to that of the vortic
equation, but both are required for a consistent high-order formulation.

Results from the uniform mesh convergence study conducted for stream-function vari
in energy norm using both GWS and high-order formulation with-RE) and Re= 100 are
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(e) 4'* order, vorticity solution (£) 4** order, velocity profile

FIG. 4. Driven-cavity benchmark solutions. Re1000, 33x 33 node uniform mesh.

shown in Table IV. All solutions were time-iterated to steady-state. Obtained convergel
data indicate near-second-order convergence for both methods, reflecting time-integre
second-order of accuracy. While the nominal order of accuracy in the high-order formt
tion is reduced, the desirable performance trend of the high-order method is neverthe
preserved. This is seen from the convergence data obtained ferlR@ on coarser (% 9

and 17x 17) discretizations. Consistent with the results reported for the model advectic
diffusion problem, high-order formulation achieves monotone solutions on coarser mesil
resulting in higher convergence rates and more accurate numerical results. The converg
data computed for the high-order formulation illustrates the relative importance of the ter
neglected in designing the continuous vector form of the perturbed PDE in (45). These te
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(e) 4** order, vorticity solution (f) 4*" order, velocity profile

FIG.5. Driven-cavity benchmark solutions. Re3000, 33x 33 node locally uniform mesh. X1:[33(0. 8R1.0
.02 16R1.0 .98 8R1.0 1)], X2: [33(0. 20R1.0 .98 12R1.0 1)].

are of greater significance when dealing with low Reynolds number flows, resulting in lov
convergence rates. When the Reynolds number increases, the convergence rate img
because of the diminished contribution from the neglected terms.

The accuracy of the GWS, TWS, and high-order formulations was tested by comf
ing their respective numerical solutions to fine-mesh benchmark results established
256 x 256 mesh by Ghiat al. [12]. Table V summarizes driven-cavity benchmark datz
comparisons. For the purpose of obtaining near-monotone solutions for all considered nr
ods, uniform 33x 33 node discretization was used for 400, 400, 1000, while the
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FIG. 6. Driven-cavity benchmark solutions. Vorticity high-order formulation.x333-node uniform mesh.

b) Velocity profile, Re=3000
(a) Vorticity solution, Re=3000 (B ¥eloctirpeofle

FIG. 7. Driven-cavity benchmark solutions. Vorticity high-order formulation.»>333-node locally uniform
mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X23B(0. 20R1.0 .98 12R1.0 1)].
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(b) Velocity profile, Re=3000

(a) Vorticity solution, Re=3000

FIG. 8. Driven-cavity benchmark solutions. Streamfunction high-order formulatiork 33-node locally
uniform mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X23B(0. 20R1.0 .98 12R1.0 1)].
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TABLE IV
Driven-Cavity Benchmark Convergence Study.
Streamfunction in Energy Norm

Nnode W] x 1072 AW x 1072 Slope
(a) Re= 10, high-order formulation

9x9 2.8577 — —
17 x 17 3.2011 0.3434 —
33x 33 3.3113 0.1102 1.64
65 x 65 3.3443 0.0330 1.74

(b) Re=10, GWS formulation

9x9 2.8535 — —
17 x 17 3.1998 0.3463 —
33x 33 3.3110 0.1112 1.64
65 x 65 3.3442 0.0332 1.74

(c) Re= 100, high-order formulation

9x9 3.1670 — —
17 x 17 3.4033 0.2363 —
33x 33 3.4364 0.0331 2.84
65 x 65 3.4422 0.0058 251

(d) Re=100, GWS formulation

9x9 2.7706 — —
17 x 17 3.2747 0.5041 —
33x 33 3.4023 0.1276 1.98
65 x 65 3.4332 0.0309 2.05

locally uniform discretization quantized as X1: [33(0. 9R1.0.02 14R1.0 .98 9R1.0 1)], X
[—33(0.18R1.0.98 14R1.0 1)] was used forR&200. The study compares the maximum
values of the streamfunction variable achieved over the entire solution dogair) (
together with the value of the vorticity variable computed at the same nodal location,
produced by the considered methods. For consistency, the A éBameter was set to 0.2
in all computations. High-order and GWS formulations yield similar results, with the higl|
order method being consistently more accurate. The TWS method results are overdiffi
via thep parameter selection for Re 100, 400 and produce accurate results foeR&©00.

TABLE V
Driven-Cavity Benchmark Accuracy Comparison

Re Ghiaet al. GWS TWSB =0.2 High-order

(@) [ |max
100 0.103423 0.10377 0.08745 0.10358
400 0.113909  0.11467 0.11067 0.11771
1000 0.117929 0.11881 0.12059 0.11835
3200 0.120377  0.11835 0.11831 0.11836
(b) Vorticity w
100 3.16646 3.29898 3.08023 3.30388
400 2.29469 2.31917 2.31133 2.31648
1000 2.04908 2.09925 2.12341 2.10249

3200 1.98860 1.49245 1.88762 2.10410
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Overall, the numerical results obtained for the driven-cavity benchmark problem confi
the advantages of using the developed high-order formulation. This formulation allows
achieving monotone accurate numerical solutions on coarser discretizations as comp
to GWS and TWS methods. This preserves the high-order solution trends illustrated
the model advection—diffusion problem and provides for a better resolution of the inter
of the solution domain. The application of the correction error terms developed hereir
governed by physics of the problem and does not require many knobs and switches to rul
problem.

CONCLUSIONS

A new approach to designing high-order accurate CFD methods has been develc
and tested for a range of problem statements belonging to the incompressible Nav
Stokes equation system. The systematic construction of progressively higher order sp
approximations is achieved via a modified equation analysis, which allows one to deterrn
the computational stencil coefficients appropriate to a desired accuracy order. The resu
high-order error correction terms are shown to be consistent with them characteristic
of the TWS finite element formulation. This confirms the expected high-order of spat
accuracy in TWS constructions and provides a highly efficient dispersion error cont
mechanism, whose application is based on the specifics of the solution domain discretize
and physics of the problem.

Theoretical development utilizes fundamentals of the finite element weak statement
mulation and truncation error analysis to characterize error in the numerical solution
cess. It then offers a computationally inexpensive way of constructing equation-spec
higher order approximations. A distinguishing desirable property of the developed mett
is solution matrix bandwidth, which always remains equal to that of the second-order ¢
cretization. This permits combining the computational efficiency of the lower order methc
with superior accuracy inherent in high-order approximations. Generality of the underlyi
principles is shown to provide a natural transition of the concepts derived for the ot
dimensional steady-state case to multidimensional and unsteady problems. The pertu
PDE analysis is further demonstrated to be widely applicable to Navier—Stokes nonlin
equation law system, with the theoretical development yielding the continuous vector for
needed for the appropriate error corrections.

Numerical simulations compare performance of the developed method to that of
GWS and TWS formulations. Uniform mesh refinement convergence results confirm:
order of truncation error for each method. High-order formulation is shown to requi
significantly fewer nodes to accurately resolve solution gradients for convection domina
problems. Benchmark problem applications for the incompressible Navier—Stokes equat
complete the manuscript. In both cases, the developed high-order formulation is show
result in more accurate solutions on coarser discretizations, thus preserving the de
trends illustrated for the model advection—diffusion equation. The theoretical developm
is therefore complete.
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