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Traditionally, finite element methods generate progressively higher order accurate
solutions by use of higher degree trial space bases for the weak statement construc-
tion. This invariably yields matrix equations of greater bandwidth thus increasing
implementational and computational costs. A new approach to designing high order,
defined here to exceed a third-order accurate method, has been developed and tested.
The systematic construction of progressively higher order spatial approximations
is achieved via a modified equation analysis, which allows one to clearly identify
appended terms appropriate for a desired accuracy order. The resulting “modified”
PDE is shown to be consistent with the Taylor Weak Statement (TWS) formulation.
It confirms the expected high order of spatial accuracy in TWS constructions and
provides a highly efficient dispersion error control mechanism whose application
is based on the specifics of the solution domain discretization and physics of the
problem. A distinguishing desirable property of the developed method is solution
matrix bandwidth containment, i.e., bandwidth always remains equal to that of the
linear basis (second-order) discretization. This permits combining the computational
efficiency of the lower order methods with superior accuracy inherent in higher order
approximations. c© 2001 Academic Press

INTRODUCTION

Higher order methods can generate very accurate results for problems with smooth data,
that is, solutions for which the physical domain is smoothly mapped onto the computational
space. This is accomplished by increasing the degree of the trial space basis [27], which
invariably yields matrix equations of greater bandwidth. This increases the implementational
cost, but by lowering the truncation error can reduce the number of nodes needed to obtain
a given accuracy numerical solution for smooth data.

Finite difference methods approximate partial derivative entries of a given PDE
on an individual basis. The value of each derivative at a generic computational node is
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approximated by a linear combination of function values at the adjacent nodes. Conse-
quently, coefficients of this combination are established by matching Taylor series coeffi-
cients [34].

Using additional nodes for wider computational stencil permits a higher order accuracy
by introducing more unknowns into the approximation expression. Generalization of this
approach is provided by Pade or by compact finite difference schemes [22, 25].

Alternatively, a higher order approximation for select elliptic problem statements can be
achieved using Hermitian type discretization methods [9] without adding additional pivotal
points. In this case, nodal values of higher order derivatives are used to introduce more
coefficients in the stencil expressions, e.g.,

a1Qj−1+ a2Qj + a3Qj+1+ a4Q′′j−1+ a5Q′′j + a6Q′′j+1 = 0. (1)

Once stencil coefficients are determined by Taylor series analysis, solution matrix bandwidth
expansion is contained by expressing high-order derivatives via nodal function values.

Unless this transition can be enabled by the partial differential equation itself, the so-
lution matrix bandwidth must be expanded to accommodate the extra unknowns resulting
from introducing nodal values of higher order derivatives into the stencil expression. Here
again, a higher order approximation comes at a computational price of solving matrix
equations of greater bandwidth. Of particular importance, this is clearly the case for the
advection–diffusion equation, which does not provide a dependence between derivatives
and corresponding function values, rendering Hermitian methods ineffective in reducing
computational cost.

Approximation can be further optimized by introducing additional theoretical consid-
erations, suitable for a particular physical problem. Optimized compact finite difference
schemes [19, 33, 35] utilize Fourier analysis to achieve maximum resolution by minimizing
dispersive (phase) errors in the differencing approximation. Resolution of sharp boundary
layers in convection dominated problems, and shock-like discontinuities caused by local
nonlinearities, can be enhanced by promoting the scheme’s “monotonicity.”

Thus, the analysis of a normalized-variable diagram leads to the restrictions being placed
on time-averaged normalized face values of the solution resulting in the ULTIMATE
strategy [24] for modulating a numerical solution, which can be applied for arbitrarily
high-order schemes. Similarly, comparison of relevant divided differences to select the
locally smoothest stencil, as used on the reconstruction stage of the interpolation proce-
dure described by Shu [32] for ENO and WENO type schemes, yields highly accurate
solutions.

Finite element methods proceed in a fundamentally different manner. The cornerstone
of the theoretical development is the “weak form” formulation [3] requiring the measure of
the error in the approximate solution to vanish in an integrated sense. Introduction of the
solution domain discretization further replaces the continuous solution approximation with
its appropriate piecewise-continuous form, resulting in generation of the “weak statement”
extremum, a precise definition of the computational stencil expressions upon specification
of suitable test and trial basis function sets.

A higher order of approximation is achieved by general or local embedding of higher
degree interpolants (p-refinement, see [27]). Method performance can be enhanced by
“optimizing” test basis function sets leading to various Petrov–Galerkin approximations
[5, 6].
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Optimalh− p finite element methods [27] use bilinear form symmetrization to derive
problem specific test and trial functions. The existence of an accurate fine mesh solution
to a given problem is assumed, and the corresponding optimal test and trial functions are
designed to match this solution at the nodes of a significantly coarser grid. This leads
to the “extrasuperconvergence” result which allows for ana posteriorierror estimate on
each of the finite elements of the solution domain discretization, yielding an adaptive mesh
refinement strategy.

Early Petrov–Galerkin methods [8, 13] introduced excessive amounts of diffusion into
the numerical solution, and SUPG methods [5] were designed to counter this problem.
Extension of the Lax–Wendroff method [23], which uses the governing equation to cancel
error terms in time and space to a finite element formulation, led to development of the
Taylor–Galerkin method of Donea [10], which was generalized as the Taylor weak statement
(TWS) by Baker and Kim [2]. Detailed investigation of the TWS method performance for
various multidimensional problems can be found in [6, 7].

Matrix/static condensation techniques, unique for finite element formulations, provide
another powerful tool for method optimization. The SGM method of Roy and Baker
[28, 29], and Galerkin methods with bubble functions [1], successfully use this approach to
promote solution stability and monotonicity. Finite element methods specifically designed
for shock-capturing were shown to significantly improve the method’s ability to resolve
sharp solution discontinuities. Examples include discontinuous Galerkin methods [14] and
a nonlinear element–upstream weak statement (NEWS) algorithm [16, 17], that achieves
accurate monotone solutions for various conservation law system forms.

Overall, upon discretization of the solution domain, virtually all high-order methods result
in matrix equations with larger bandwidths thus increasing the computational cost. Such
wider stencils cannot be implemented at the boundaries, leading to a local loss of accuracy,
especially in multidimensional cases, hence requiring additional theoretical consideration.
Grid generation around complex geometries also becomes extremely complicated, since a
smooth grid is dictated by the design of high-order methods.

Recently, a method resolving this dilemma was developed and tested [21]. The theory
provides high-order accurate solutions at no added computational cost, by retaining the
solution matrix bandwidth of the second-order methods. This is potentially significant in
simplifying multidimensional grid generation procedures necessary for the implementation
of high-order methods. The development utilizes the ideas of “modified” partial differential
equation analysis of Warming and Hyett [36] (see also [31]) to derive the problem-specific
computational stencil coefficients appropriate for the desired order of accuracy. This allows
for avoiding implementational difficulties encountered by Hermitian type methods.

The systematic construction of progressively higher order spatial approximations is
achieved via a modified equation analysis, which allows one to clearly identify correc-
tion terms appropriate for a desired accuracy order. The resulting perturbed PDE is shown
to be consistent with the Taylor Weak Statement formulation. It confirms the expected high
order of spatial accuracy in TWS constructions and provides a highly efficient dispersion
error control mechanism whose application is based on the specifics of the solution domain
discretization and physics of the problem.

The present paper extends the developed formulation to benchmark problem applications
for the Navier–Stokes equations. The paper is organized as follows. It presents the theoretical
analysis for nonlinear advection–diffusion problems in one and two dimensions. Numerical
simulations compare performance of the developed method to that of the linear and bilinear
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basis Galerkin finite element formulations. Uniform mesh refinement convergence results
confirm the order of truncation error, correlated with an asymptotic error estimate, for
each method. The generated high-order TWS formulation is shown to require significantly
fewer nodes to accurately resolve solution gradients for convection dominated problems.
Benchmark problem tests for the incompressible Navier–Stokes equations complete the
paper.

ONE-DIMENSIONAL STEADY-STATE FORMULATION

Consider the multidimensional advection–diffusion equation with the corresponding
Dirichlet and Neumann boundary conditions

L(q(x, t)) = ∂q(x, t)
∂t

+ f(x) · ∇q(x, t)− ε∇ · ∇q(x, t) = 0 in Ä ∈ Rn × R1 (2)

q = qb on ∂Ä1 (3)

∂q

∂n
= g(x) on ∂Ä2; ∂Ä1 ∪ ∂Ä2 = ∂Ä, (4)

where viscosityε and boundary datag(x),qb are given.
Model equation (2), rewritten for the one-dimensional steady-state case, becomes

f (q, x)
dq(x)

dx
− ε(x)d

2q

dx2
= 0. (5)

Assuming the existence of appropriate boundary conditions, the discrete weak statement
formulation is

W Sh = Se([U + D]e{Q}e) = Se([ A(h, ε)]e{Q}e) = {0}, (6)

where [U ]e, [D]e, [ A]e are the trial-test function specific matrix forms on the generic FE
domainÄe.

A fully discrete equivalent of (6), obtained by assembling the element matrix [A]e on
two adjacent elements, yields the generic stencil form

f j (a1Qj−1+ a2Qj + a3Qj+1)− ε j (a4Qj−1+ a5Qj + a6Qj+1) = 0 (7)

or

( f j a1− ε j a4)Qj−1+ ( f j a2− ε j a5)Qj + ( f j a3− ε j a6)Qj+1 = 0. (8)

Here,ai are the coefficients dependent on a specific choice of finite element trial and test
functions, andQj−1, Qj , Qj+1 are the unknown nodal values of the approximate solution.
A genuine finite element formulation would require interpolation of functionsf (q, x)
andε(x), thus adding complexity to the stencil expression in (8). In the present analysis,
such interpolated functional expressions are replaced with their respective nodal values
f j andε j .
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Assuming a locally uniform mesh with4x = h, which is sufficiently small, and writing
a Taylor series expansion at nodej yields

f j

[
(a1+ a2+ a3)Q+ (a3− a1)hQx + (a3+ a1)

h2

2
Qxx + (a3− a1)

∞∑
n=3,2

hn

n!
Q(n)

+ (a3+ a1)

∞∑
n=4,2

hn

n!
Q(n)

]
− ε j

[
(a4+ a5+ a6)Q+ (a6− a4)hQx

+ (a6+ a4)
h2

2
Qxx + (a6− a4)

∞∑
n=3,2

hn

n!
Q(n)+ (a6+ a4)

∞∑
n=4,2

hn

n!
Q(n)

]
= 0, (9)

whereQ replacesQj for clarity.
Naturally, for (9) to approximate Eq. (5), theai in (9) must satisfy the following con-

ditions:

a1+ a2+ a3 = 0

a3− a1 = 1

h
(10)

a3+ a1 = 0

and

a4+ a5+ a6 = 0

a6− a4 = 0 (11)

a6+ a4 = 2

h2
.

Coefficient groups [a1,a2,a3] and [a4,a5,a6] are responsible for the second-order dis-
cretization of the first- and second-order derivatives, respectively, and conditions (10) and
(11) must be satisfied independently of a particular approximation technique selected to
arrive at (8). Therefore,

∂q(x)

∂x
= a1Qj−1+ a2Qj + a3Qj+1

(12)
∂2q(x)

∂x2
= a4Qj−1+ a5Qj + a6Qj+1,

and coefficientsai are uniquely determined by solving (10) and (11),

a1 = − 1

2h
, a2 = 0, a3 = 1

2h
(13)

a4 = 1

h2
, a5 = − 2

h2
, a6 = 1

h2
.

For the computational stencil coefficientsai satisfying (13), (9) becomes

f j Qx − ε j Qxx + h2

(
f j Qxxx

6
− ε j Qxxxx

12

)
+ H.O.T. = 0. (14)
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Rewriting (14) yields the convenient form

εQxx = f Qx + h2

(
f Qxxx

6
− εQxxxx

12

)
+ H.O.T., (15)

where f andε replacef j andε j , respectively.
Equation (15) represents an “infinite” order partial differential equation satisfied by the

nodal numerical solution{Q} [34, 36]. We therefore can differentiate it repeatedly with
respect tox, thus expressing higher order derivatives present in (15), and then attempt
to derive a second-order PDE (ODE in the one-dimensional steady-state case), whose
second-order approximation would result in a higher order approximation of the equation
to be solved. Obtaining this “perturbed” second-order ODE is the key to this theoretical
development, since any second-order ODE can be discretized on three nodes in the one-
dimensional case.

Assuming for simplicity the viscosity parameterε is constant, differentiating (15) repeat-
edly with respect tox and neglecting high-order terms leads to

εQxxx = fx Qx + f Qxx + H.O.T. (16)

εQxxxx = fxxQx + fx Qxx + fx Qxx + f Qxxx+ H.O.T. (17)

Substituting (16) and (17) into (14) and neglecting the terms of the order greater than 2,
one obtains

f Qx − εQxx + h2Qx

(
f fx

12ε
− fxx

12

)
+ h2Qxx

(
f 2

12ε
− fx

6

)
= 0, (18)

which represents the equation satisfied by the nodal approximate solutionQ and includes the
second-order error terms resulting from the selected second-order approximation. Suppose
the original equation (5) is now replaced with the following continuous form:

f qx − εqxx − h2qx

(
f fx

12ε
− fxx

12

)
− h2qxx

(
f 2

12ε
− fx

6

)
= 0. (19)

The original equation is supplemented here by two correction terms, obtained by reversing
the signs on the second-order truncation error contributions in (18). Applying second-order
discretization, (12) and (13), to this “perturbed” ODE rather than to the original equation
(5) would result in cancellation of the second-order truncation error terms consistent with
(18) and therefore provide a fourth-order accurate numerical solution to the original equa-
tion. Since only first- and second-order derivatives are present in (19), its second-order
discretization does not result in solution matrix bandwidth expansion. The fourth-order
accurate numerical solution to the original equation (5) is therefore obtained at no added
computational cost as compared to that of the second-order approximation.

It is important to note that for practical applications the viscosity parameterε is usually
small. Hence, for problems with smooth solution and data distributions, it is possible to
neglect the terms of the order unity as compared to those of the order 1/ε, thus reducing
(19) to

f qx − εqxx − h2qx
f fx

12ε
− h2qxx

f 2

12ε
= 0, (20)



TAYLOR WEAK STATEMENT FORMULATION 555

and combining the terms, the perturbed ODE becomes

f
∂q

∂x
− ε ∂

2q

∂x2
− h2

12ε
f
∂

∂x

(
f
∂q

∂x

)
= 0. (21)

While numerical solution to (21). would lose its nominal fourth-order of accuracy, it nev-
ertheless could retain the desirable stabilizing effects of high-order approximations. Appli-
cability of this order of magnitude assumption must be carefully evaluated for particular
physical problems, since values of function derivatives could be much larger than those of
the function itself near points of discontinuity and sharp boundary layers. This assumption is
not used in the example advection–diffusion problems considered herein, but its suitability
for the Navier–Stokes equation class is discussed later in this paper.

With (19) resulting in a fourth-order accurate solution to the original equation (5), similar
development can be shown to yield the following sixth-order perturbed ODE, illustrated for
the linear f (q, x) = u(x) case as

uqx − εqxx− h2qx

(
uux

12ε
− uxx

12

)
− h2qxx

(
u2

12ε
− ux

6

)
− h4qx

(
uu2

x

180ε2
− u3ux

720ε3

− uxxxx

360
− u2uxx

720ε2
+ uuxxx

180ε

)
− h4qxx

(
u2

xx

180ε
− uxxx

90
+ uuxx

72ε
+ u2ux

360ε2
− u4

720ε3

)
= 0.

(22)

Note, that the terms of the orderh2 remain unchanged from the fourth-order ODE, thus
allowing for recursive development of higher order approximations.

First consider a one-dimensional steady-state case for a constant velocityu(x) = ui and
Dirichlet boundary conditions. Equation (2) is

L(q(x)) = u
dq(x)

dx
− εd2q(x)

dx2
= 0 in x ∈ (0, 1) (23)

q(0) = 0 q(1) = 1 on ∂Ä. (24)

Via the developed methodology, perturbed ODE (19) becomes

uQx − εQxx − Qxx
h2u2

12ε
= 0, (25)

indicating that only the second-order derivative perturbation term is required to achieve a
higher order numerical solution in this case.

The computational stencil expression (8) reduces to

u(a1Qj−1+ a2Qj + a3Qj+1)− ε(a4Qj−1+ a5Qj + a6Qj+1)

− h2u2

12ε
(a4Qj−1+ a5Qj + a6Qj+1) = 0, (26)

where coefficientsai are given in (13). Collecting the terms, the three node stencil is[
−6hεu+ 12ε2+ h2u2

12εh2

]
Qj−1+

[
12ε2+ h2u2

6εh2

]
Qj

+
[

6hεu− 12ε2− h2u2

12εh2

]
Qj+1 = 0. (27)
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With this linear case development now complete, one can proceed to the nonlinear
Burger’s equation case,f (x,q)=q(x). The one-dimensional steady-state equation is now
of the form

L(q(x)) = εd2q(x)

dx2
− q

dq(x)

dx
= 0 in x ∈ (0, 1), (28)

with boundary conditions

q(0) = 1 q(1) = −1. (29)

The perturbed ODE form remains (19), withf (x,q) replaced byq(x). Replacing con-
tinuous derivative expressions with their discrete counterparts via (12), the computational
stencil (8) takes the homogeneous form

Fj = Qj

(
−Qj−1

2h
+ Qj+1

2h

)
− ε

(
Qj−1

h2
− 2Qj

h2
+ Qj+1

h2

)
− h2Qj

12ε

(
−Qj−1

2h
+ Qj+1

2h

)2

− h2Q2
j

12ε

(
Qj−1

h2
− 2Qj

h2
+ Qj+1

h2

)
+ h2

4

(
−Qj−1

2h
+ Qj+1

2h

)(
Qj−1

h2
− 2Qj

h2
+ Qj+1

h2

)
= 0. (30)

The nonlinear system of equations (30) is solved using Newton’s iterative procedure,
with tridiagonal Jacobian matrix{JACj−1, JACj , JACj+1} evaluated from (30) as

JACj−1 = ∂Fj

∂Qj−1
= − 1

24εh2

(
6Qj εh+ 24ε2+ h2Qj Qj−1

− h2Qj Qj+1+ 2Q2
j h

2+ 6Qj−1εh
)

(31)

JACj = ∂Fj

∂Qj
= − 1

48εh2

(
12Qj−1εh− 12Qj+1εh− 96ε2

+ h2Q2
j−1− 2h2Qj−1Qj+1+ h2Q2

j+1

+ 8h2Qj Qj−1− 24Q2
j h

2+ 8h2Qj Qj+1
)

(32)

JACj+1 = ∂Fj

∂Qj+1
= 1

24εh2

(
6Qj εh− 24ε2+ h2Qj Qj−1

− h2Qj Qj+1− 2Q2
j h

2+ 6Qj+1εh
)
. (33)

TWO-DIMENSIONAL STEADY-STATE FORMULATION

Model equation (2) rewritten for the two-dimensional steady-state case and velocity
u(x, y) = u(x, y)i + v(x, y)j becomes

L(q(x, y)) = ε ∂
2q(x, y)

∂x2
+ ε ∂

2q(x, y)

∂y2
− u(x, y)

∂q(x, y)

∂x

− v(x, y)
∂q(x, y)

∂y
= 0 in x, y ∈ (0, 1)× (0, 1). (34)

In accordance with the Galerkin bilinear basis two-dimensional weak statement formula-
tion written on rectangular four-node element, a fully discrete equivalent of (34), obtained
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by assembling the element matrices on four adjacent elements sharing a common corner
node, leads to the generic nine-node computational stencil

c1Qi−1, j−1+ c2Qi, j−1+ c3Qi+1, j−1+ c4Qi−1, j + c5Qi, j

+ c6Qi+1, j + c7Qi−1, j+1+ c8Qi, j+1+ c9Qi+1, j+1 = 0. (35)

Assuming a uniform square mesh with4x = 4y = h, which is sufficiently small, and
writing a Taylor series expansion at nodei, j yields (36) withQ replacingQi, j for clar-
ity. Equation (36) represents an infinite order partial differential equation satisfied by the
numerical solution. Retaining only the terms of the order lower or equal than four yields

(c1+ c2+ c3+ c4+ c5+ c6+ c7+ c8+ c9)Q+ hQx(−c1+ c3− c4+ c6− c7+ c9)

+ hQy(−c1− c2− c3+ c7+ c8+ c9)+ h2

2
Qxx(c1+ c3+ c4+ c6+ c7+ c9)

+ h2

2
Qyy(c1+ c2+ c3+ c7+ c8+ c9)+ h2Qxy(c1− c3− c7+ c9)

+ h3

6
Qxxx(c9− c1+ c3− c7+ c6− c4)+ h3

6
Qyyy(c9− c1− c3+ c7+ c8− c2)

+ h3

2
Qxxy(c9− c1− c3+ c7)+ h3

2
Qxyy(c9− c1+ c3− c7)

+ h4

24
Qxxxx(c9+ c1+ c3+ c7+ c6+ c4)+ h4

24
Qyyyy(c9+ c1+ c3+ c7+ c8+ c2)

+ h4

6
Qxxxy(c9+ c1− c3− c7)+ h4

6
Qxyyy(c9+ c1− c3− c7)

+ h4

4
Qxxyy(c9+ c1+ c3+ c7)+ H.O.T. = 0. (36)

As shown by Kolesnikov and Baker [21], the necessary symmetrization of the selected
discretization is achieved via

9∑
n=1

cn = 0

− c1+ c3− c4+ c6− c7+ c9 = u

h

− c1− c2− c3+ c7+ c8+ c9 = v

h

c1+ c3+ c4+ c6+ c7+ c9 = −2ε

h2

c1+ c2+ c3+ c7+ c8+ c9 = −2ε

h2
(37)

c1− c3− c7+ c9= 0

c9− c1= u+ v
6h

c9+ c1= −ε
3h2

c3− c7= u− v
6h

,
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which reduces (36) to

uQx + vQy − εQxx − εQyy+ h2

(
vQyyy

6
+ uQxxx

6
+ vQxxy

6
+ uQxyy

6

)
− h2ε

(
Qxxxx

12
+ Qyyyy

12
+ Qxxyy

6

)
+ H.O.T. = 0. (38)

In concert with the theoretical developments of the previous chapters, one can now
differentiate (38) twice with respect tox andy and neglecting higher order terms obtain

uxxQx + 2ux Qxx + uQxxx+ vxxQy + 2vx Qxy+ vQxxy = εQxxxx+ εQxxyy (39)

uyyQx + 2uy Qxy+ uQxyy+ vyyQy + 2vy Qyy+ vQyyy = εQxxyy+ εQyyyy. (40)

Similarly, differentiating (38) with respect tox andy produces

ux Qx + uQxx + vx Qy + vQxy = εQxxx+ εQxyy (41)

uy Qx + uQxy+ vy Qy + vQyy = εQxxy+ εQyyy. (42)

Substituting expressions (39–42) into (36) leads to

uQx + vQy − εQxx − εQyy+ h2

(
vuy Qx

12ε
+ vuQxy

6ε
+ vvy Qy

12ε
+ v

2Qyy

12ε

)
+ h2

(
uux Qx

12ε
+ u2Qxx

12ε
+ uvx Qy

12ε
− uxxQx

12
− ux Qxx

6

)
+ h2

(
−vxxQy

12
− vx Qxy

6
− uyyQx

12
− uy Qxy

6
− vyyQy

12
− vy Qyy

6

)
= 0, (43)

which after reversing the sign on the truncation error terms yields the modified fourth-order
perturbed PDE in the form

uQx + vQy − εQxx − εQyy− h2

(
vuy Qx

12ε
+ vuQxy

6ε
+ vvy Qy

12ε
+ v

2Qyy

12ε

)
− h2

(
uux Qx

12ε
+ u2Qxx

12ε
+ uvx Qy

12ε
− uxxQx

12
− ux Qxx

6

)
− h2

(
−vxxQy

12
− vx Qxy

6
− uyyQx

12
− uy Qxy

6
− vyyQy

12
− vy Qyy

6

)
= 0. (44)

Again, note that for practical applications with smooth data and solution distributions,
the 1/ε terms dominate. Hence, neglecting high-order correction terms of the order of 1,
the remaining terms can be combined. The perturbed PDE (44) is then conveniently recast
in continuum vector-form

u · ∇q − ε∇ · ∇q − h2

12ε
u · ∇(u · ∇q) = 0. (45)

As before, discretization of perturbed equation (44) (consistent with (37)) will yield a
fourth-order method because of the developed cancellation of the error terms. The partial
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derivatives of the orderh2 present in (44) can be discretized via any conventional second-
order FD/FV/FE method, since the error terms in their respective approximate expressions
on a uniform mesh will be of the orderh4. The following are used in this development:

Qx = − 1

2h
Qi−1, j + 1

2h
Qi+1, j (46)

Qy = − 1

2h
Qi, j−1+ 1

2h
Qi, j+1 (47)

Qxy = 1

4h2
Qi−1, j−1− 1

4h2
Qi+1, j−1− 1

4h2
Qi−1, j+1+ 1

4h2
Qi+1, j+1 (48)

Qxx = 1

h2
Qi−1, j − 2

h2
Qi, j + 1

h2
Qi+1, j (49)

Qyy = 1

h2
Qi, j−1− 2

h2
Qi, j + 1

h2
Qi, j+1. (50)

Indeed, all approximations satisfy the matrix bandwidth restriction requirement and some
may be easily recognized as their one-dimensional counterparts. While the approximation
selection in (46–50) does not compromise the fourth-order accuracy of the method, the
algorithm performance can be further optimized by customizing these discrete expressions.

The theoretical approach developed herein for the advection–diffusion example prob-
lems is directly applicable to the incompressible Navier–Stokes equation class as illus-
trated in the next section. Theory extension for the inviscid Euler equations is detailed
in [20].

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS: Ω−Ψ ALGORITHM

Navier–Stokes equation set governing two-dimensional flow of viscous incompressible
fluid is written as (see, for example, [3])

∂u j

∂xj
= 0 (51)

∂ui

∂t
+ ∂

∂xj

(
ui u j + p

ρ0
δi j − σi j

)
+ bi

Fr
= 0, (52)

whereρ0 is the constant density,u j is the two-dimensional velocity vector,bi is the body
force, p is pressure,σi j is the Stokes stress tensor defined as

σi j = ν

Re

(
∂ui

∂xj
+ ∂u j

∂xi

)
, (53)

and nondimensional groups are defined as

Re= U∞L

ν∞
(54)

Fr = U2
∞

Lg
. (55)
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The constant density restriction allows for introduction of the streamfunction–vorticity
variable setψ,ω via

u ≡ 5× ψk (56)

ω ≡ 5× u · k, (57)

which recasts the original system into

∂ω

∂t
+ (5× ψk · 5)ω − 1

Re
52 ω = 0 (58)

52ψ + ω = 0, (59)

with pressure being determined as a postprocessing operation via

1

ρ0
52 p− ω2+ ∂

2ψ

∂x2
+ ∂

2ψ

∂y2
+ 2

∂2ψ

∂x∂y
= 0. (60)

Neglecting the body force contribution, writing (58, 59) in a component form and re-
membering definitions (56, 57) yields the Navier–Stokes system in the form

∂ω

∂t
+ u

∂ω

∂x
+ v ∂ω

∂y
− 1

Re

∂2ω

∂x2
− 1

Re

∂2ω

∂y2
= 0 (61)

∂2ψ

∂x2
+ ∂

2ψ

∂y2
+ ω = 0 (62)

u = ∂ψ

∂y
(63)

v = ∂ψ

∂x
. (64)

Equation (61) is recognized as the unsteady advection–diffusion equation. Completion
of the high-order formulation for this problem class therefore rests on the corresponding
development for the stream-function Poisson equation. Assuming existence of the appro-
priate boundary conditions, generality of the developed theory readily provides a required
extension. Here, one proceeds along a well-established design sequence.

Spatial discretization of (62) on a nine-node computational stencil results in

Wi j + c19i−1, j−1+ c29i, j−1+ c39i+1, j−1+ c49i−1, j + c59i, j

+ c69i+1, j + c79i−1, j+1+ c89i, j+1+ c99i+1, j+1 = 0. (65)

The approximation requirement as dictated by (36) and Taylor series expansion of (65)
is

9∑
n=1

cn = 0

− c1+ c3− c4+ c6− c7+ c9 = 0

− c1− c2− c3+ c7+ c8+ c9 = 0
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c1+ c3+ c4+ c6+ c7+ c9 = 2

h2

c1+ c2+ c3+ c7+ c8+ c9 = 2

h2
(66)

c1− c3− c7+ c9 = 0

c9− c1 = 0

c9+ c1 = 1

3h2

c3− c7 = 0,

which results in

c1 = 1

6h2
, c2 = 2

3h2
, c3 = 1

6h2
, c4 = 2

3h2
, c5 = − 10

3h2
(67)

c6 = 2

3h2
, c7 = 1

6h2
, c8 = 2

3h2
, c9 = 1

6h2
, (68)

and reduces the corresponding truncation error expression to

ω + ψxx + ψyy+ h2

12
ψxxxx+ h2

12
ψyyyy+ h2

6
ψxxyy+ H.O.T. = 0. (69)

Differentiating (69) byxx and yy, neglecting high-order terms, and taking the linear
combination of the resulting expressions, yields

ψxxxx+ 2ψxxyy+ ψyyyy= −ωxx − ωyy. (70)

Substituting (70) into (69) and reversing the error term signs provides the desired fourth-
order accurate perturbed PDE in the form

ω + ∂
2ψ

∂x2
+ ∂

2ψ

∂y2
+ h2

12

(
∂2ω

∂x2
+ ∂

2ω

∂y2

)
= 0. (71)

The modified continuous system composed of four coupled equations written for four
variablesω,ψ,u, v now is

∂ω

∂t
+ u · ∇ω − 1

Re
∇ · ∇ω − h2Re

12
u · ∇(u · ∇ω) = 0 (72)

ω +∇ · ∇ψ + h2

12
∇ · ∇ω = 0 (73)

u = ∂ψ

∂y
(74)

v = ∂ψ

∂x
, (75)

with pressure being determined via (60) as a postprocessing operation.
Note that the selected formulation for the corrected vorticity equation (72) is consistent

with the continuum vector form (44). One therefore cannot expect the numerical solution
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to attain the design fourth-order of accuracy. Nevertheless, computational results show
the remaining correction terms to retain the desirable stabilizing effects of the high-order
formulation.

RESULTS AND DISCUSSION

Asymptotic Convergence Estimates

Since an analytical solution is not generally available, the following analysis [3] is used
to confirm the predicted convergence rate of the developed methods. For the lead term of
the truncation series expansion given in the form

errorh ' Ckh2k
e (76)

and using

Th + eh = Texact= Th/2+ eh/2, (77)

one can easily verify that

eh = (22k)eh/2 (78)

and therefore

Th/2− Th = (22k − 1)eh/2, eh/2 = 4Th/2

22k − 1
. (79)

Here4Th/2 = Th/2− Th denotes the computed difference in the two approximate solu-
tions. Selecting alog representation, the slope of the convergence curve should be

slope= log
(
eh/M

)− log
(
eh/2M

)
log(h)− log(h/2)

= log
(
eh/M

/
eh/2M

)
log(2)

, (80)

whereM is the number of finite elements used in computing the solution.

One-Dimensional Advection–Diffusion

Convergence data computed for the derived methods are presented in the Tables I and II.
Table I lists data obtained for the scalar case (23) and Table II for the nonlinear case (28).
All data were computed forε = 0.1.

Computed slope values confirm Taylor series-predicted convergence rates of the de-
veloped methods. When compared to the exact solutionQ(x = 0.75) = 0.0820433 in the
scalar case (ε = 0.1), the fourth-order method evidences superior performance. Specifically,
monotone and accurate results are obtained on a relatively coarse mesh. A tenfold mesh
refinement would be required for the second-order method to produce comparable results.
This seemingly insignificant “third digit” observation will become extremely important in
costly real-life computations.

Solution evolution for the linear advection–diffusion forε = 0.001 is shown in Fig. 1 with
number of nodesNnode. Presented are numerical solutions computed using fourth-order
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TABLE I

Perturbed PDE Method. 1D Linear Advection–Diffusion,ε = 0.1

Nnode Q(x= 0.75) 4Q Slope

(a) Fourth-order method
9 0.08280510 — —

17 0.08208770 0.0007174 —
33 0.08204605 0.00004165 4.107
65 0.0820434 0.00000255 4.03

129 0.08204337 0.00000012 4.41

(b) Second-order method
9 0.05324680 — —

17 0.07525270 0.02200590 —
33 0.08036900 0.00511630 2.105
65 0.08162610 0.00125700 2.025

129 0.081193910 0.00313000 2.006

and second-order methods. Even for this modest value ofε, Galerkin linear basis solution
remains oscillatory in the boundary region for all considered discretizations. The well-
known monotonicity constraint [11, 28] applied toε = 0.001 states that at least 500 nodes
are needed for Galerkin linear basis discretization to produce a nonoscillatory (monotone)
solution.

In contrast, the fourth-order method solutions remain monotone independent ofNnode,
albeit overdiffused on the coarse (Nnode= 21) mesh, in full agreement with high-order
method results reported by Fletcher [11]. While the coarse mesh solution is clearly overdif-
fused, a reasonable 121-node discretization of the solution domain allows for the computing
of an acceptable solution. Further refinement results in a highly accurate monotone solution
for Nnode= 221.

Results computed for the Burger’s equation case are shown in Fig. 2 forε = 0.001. The
fourth-order accurate solutions are presented for various discretizations. Presented solutions

TABLE II

Perturbed PDE Method. 1D Burger’s Equation,ε = 0.1

Nnode Q(x= 0.25) 4Q Slope

(a) Fourth-order method
9 0.85629180 — —

17 0.86320770 0.00691590 —
33 0.86351750 0.00030980 4.48
65 0.86353430 0.00001680 4.205

129 0.86353536 0.00000106 3.987

(b) Second-order method
9 0.90590460 — —

17 0.87307980 0.03282480 —
33 0.86586460 0.00721520 2.185
65 0.86411420 0.00175040 2.044

129 0.86368005 0.00043415 2.012
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FIG. 1. Linear advection–diffusion, solution dependence onNnode, ε = 0.001. High-order and GWS perfor-
mance comparison.

follow general trends observed for the linear case, highlighting continuity of the developed
theoretical approach. All solutions are monotone with highly accurate results obtained on
sufficiently refined discretizations. The second-order method solution (not shown here) was
divergent. In fact, continuing the iteration process (up to 50 iterations, not shown) does not
improve the solution, but rather exaggerates its divergent behavior.

Overall, computational results illustrate two main points. Namely, high-order methods
can achieve desirable error levels on coarser meshes, and for a given mesh, high-order
methods produce more accurate results. The developed theoretical approach allows for
exercising these advantages at no added computational cost, which is usually associated
with solution matrix bandwidth expansion of high-order accurate methods.
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FIG. 2. Burgers equation. Fourth-order method solutions on uniform mesh,ε = 0.001.

Two-Dimensional Advection–Diffusion

Uniform mesh refinement results confirming predicted convergence rates of the developed
fourth-order method are shown in Table III.

All data were computed at the center node of the solution domainx = 0.5, y = 0.5. For
the purpose of establishing the convergence rate of the method, the linear problem with the
exact boundary conditions

q(1, 1) = 1 q(0, y) = q(x, 0) = 0 (81)

TABLE III

Perturbed PDE Method. 2D Linear Advection–Diffusion.

Fourth-Order Convergence Data

(a) ε = 1

Nnode Q 4Q Slope

3× 3 0.14254288 — —
5× 5 0.14253726 0.000005626 —
9× 9 0.14253697 0.000000287 4.29

17× 17 0.14253695 0.000000017 4.08

(b) ε = 0.1

Nnode Q× 10−5 1Q× 10−5 Slope

9× 9 0.468156 — —
17× 17 0.448714 0.01944 —
33× 33 0.447985 0.00073 4.74
65× 65 0.447945 0.00004 4.19
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FIG. 3. Linear advection–diffusion, uniform mesh, solution dependence onNnode, ε = 0.005.

q(x, 1) = e
ux
ε − 1

e
1
ε − 1

q(1, y) = e
vy
ε − 1

e
1
ε − 1

(82)

were considered in the mesh refinement study.
Numerical results in Fig. 3 present solutions to the linear problem computed on several

uniform discretizations forε = 0.005. The boundary conditions (82) were replaced with
the adiabatic conditions

∂q(x, 1)

∂n
= ∂q(1, y)

∂n
= 0. (83)

The fourth-order method yields monotone results on all discretizations. An inaccurate,
overdiffused solution on a coarse 11× 11 grid is significantly improved after a modest mesh
refinement (Fig. 3b). Further mesh refinement produces an excellent solution on a 51× 51
node mesh.
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Driven-Cavity Benchmark Solutions

The driven-cavity problem is a well-known validation benchmark problem [3, 7, 30, 37].
The solution domain is the unit square, with the lid defined to slide across the domain at a
uniform velocity.

The high-order formulation developed for the incompressible Navier–Stokes vorticity–
streamfunction formulation was shown to incorporate the fundamentals of the classic TWS
analysis. The correction error terms necessary for the appropriate order of accuracy are
combined via vector analysis to provide theβ term of the TWS formulation. The theoretical
analysis results in a highly efficient dispersion error control mechanism whose application is
based on the specifics of the solution domain discretization and physics of the problem. It is
this theoretically sound control mechanism that distinguishes this development, allowing for
selective application of optimal amounts of diffusion for maximum accuracy as dictated by
the high-order accuracy formulation. It is important to note that unlike the TWS formulation,
present development also includes the reformulated Poisson streamfunction equation as an
integral part of a high-order accurate solution process.

Numerical results for a range of Reynolds numbers are shown in Figs. 4 and 5. Compared
are GWS, TWS, and newly developed high-order method formulations. For a modest value
of Re = 1000 all solutions are of reasonable engineering quality, with GWS vorticity
solution showing some oscillatory behavior. Oscillations are significantly reduced via the
TWSβ-term application and are nonexistent on the fourth-order method solution.

The picture changes significantly as the Reynolds number is increased to 3000. As
shown in Fig. 5, GWS and TWS solutions are unacceptably polluted by oscillations, with
high-order formulation providing a excellent monotone solution on a rather coarse locally
uniform mesh. This locally uniform discretization is quantized via theaPSE notation as
X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)] and X2: [−33(0. 20R1.0 .98 12R1.0 1)], which
reads for X1: “from 0 to 0.02 place 8 nodes with the progression ratio of 1.0 (uniformly),
from 0.02 to 0.98 uniformly place 16 nodes and finally from 0.98 to 1.0 uniformly place 8
nodes.” Similarly, notation for X2 reads: “from 0 to 0.98 uniformly place 20 nodes, from
0.98 to 1.0 uniformly place 12 nodes.”

The numerical results illustrate a definite advantage of theoretically predicted selective
application of numerical diffusion provided by the error correction terms over the entire
solution domain. Note that packing more nodes at the boundaries of the solution domain
would result in monotone solutions for both GWS and TWS formulations. Of course,
the price one pays is the information lost on the interior of the solution domain with the
discretization nodes migrating to the boundaries.

The importance of considering a high-order formulation consisting of the perturbed PDEs
for both vorticity and streamfunction equations in illustrated in Figs. 6–8. Figures 6 and
7 show the results obtained when the high-order formulation is only used for the vorticity
equation while the streamfunction equation remains (59). The solution is comparable to
that of the TWS method in Fig. 5. In contrast, Fig. 8 shows the solution computed when
only the streamfunction equation is modified with vorticity being calculated via the original
equation. One may conclude that for this particular problem class, high-order modification
of the streamfunction equation is more significant as compared to that of the vorticity
equation, but both are required for a consistent high-order formulation.

Results from the uniform mesh convergence study conducted for stream-function variable
in energy norm using both GWS and high-order formulation with Re= 10 and Re= 100 are
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FIG. 4. Driven-cavity benchmark solutions. Re= 1000, 33× 33 node uniform mesh.

shown in Table IV. All solutions were time-iterated to steady-state. Obtained convergence
data indicate near-second-order convergence for both methods, reflecting time-integration
second-order of accuracy. While the nominal order of accuracy in the high-order formula-
tion is reduced, the desirable performance trend of the high-order method is nevertheless
preserved. This is seen from the convergence data obtained for Re= 100 on coarser (9× 9
and 17× 17) discretizations. Consistent with the results reported for the model advection–
diffusion problem, high-order formulation achieves monotone solutions on coarser meshes,
resulting in higher convergence rates and more accurate numerical results. The convergence
data computed for the high-order formulation illustrates the relative importance of the terms
neglected in designing the continuous vector form of the perturbed PDE in (45). These terms
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FIG. 5. Driven-cavity benchmark solutions. Re= 3000, 33× 33 node locally uniform mesh. X1: [33(0. 8R1.0
.02 16R1.0 .98 8R1.0 1)], X2: [33(0. 20R1.0 .98 12R1.0 1)].

are of greater significance when dealing with low Reynolds number flows, resulting in lower
convergence rates. When the Reynolds number increases, the convergence rate improves
because of the diminished contribution from the neglected terms.

The accuracy of the GWS, TWS, and high-order formulations was tested by compar-
ing their respective numerical solutions to fine-mesh benchmark results established on a
256× 256 mesh by Ghiaet al. [12]. Table V summarizes driven-cavity benchmark data
comparisons. For the purpose of obtaining near-monotone solutions for all considered meth-
ods, uniform 33× 33 node discretization was used for Re= 100, 400, 1000, while the
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FIG. 6. Driven-cavity benchmark solutions. Vorticity high-order formulation. 33× 33-node uniform mesh.

FIG. 7. Driven-cavity benchmark solutions. Vorticity high-order formulation. 33× 33-node locally uniform
mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X2: [−33(0. 20R1.0 .98 12R1.0 1)].

FIG. 8. Driven-cavity benchmark solutions. Streamfunction high-order formulation. 33× 33-node locally
uniform mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X2: [−33(0. 20R1.0 .98 12R1.0 1)].
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TABLE IV

Driven-Cavity Benchmark Convergence Study.

Streamfunction in Energy Norm

Nnode ‖9‖ × 10−2 ‖49‖ × 10−2 Slope

(a) Re= 10, high-order formulation
9× 9 2.8577 — —

17× 17 3.2011 0.3434 —
33× 33 3.3113 0.1102 1.64
65× 65 3.3443 0.0330 1.74

(b) Re= 10, GWS formulation
9× 9 2.8535 — —

17× 17 3.1998 0.3463 —
33× 33 3.3110 0.1112 1.64
65× 65 3.3442 0.0332 1.74

(c) Re= 100, high-order formulation
9× 9 3.1670 — —

17× 17 3.4033 0.2363 —
33× 33 3.4364 0.0331 2.84
65× 65 3.4422 0.0058 2.51

(d) Re= 100, GWS formulation
9× 9 2.7706 — —

17× 17 3.2747 0.5041 —
33× 33 3.4023 0.1276 1.98
65× 65 3.4332 0.0309 2.05

locally uniform discretization quantized as X1: [33(0. 9R1.0 .02 14R1.0 .98 9R1.0 1)], X2:
[−33(0.18R1.0 .98 14R1.0 1)] was used for Re= 3200. The study compares the maximum
values of the streamfunction variable achieved over the entire solution domain (ψmax),
together with the value of the vorticity variable computed at the same nodal location, as
produced by the considered methods. For consistency, the TWSβ parameter was set to 0.2
in all computations. High-order and GWS formulations yield similar results, with the high-
order method being consistently more accurate. The TWS method results are overdiffused
via theβ parameter selection for Re= 100, 400 and produce accurate results for Re= 1000.

TABLE V

Driven-Cavity Benchmark Accuracy Comparison

Re Ghiaet al. GWS TWSβ = 0.2 High-order

(a) |9|max

100 0.103423 0.10377 0.08745 0.10358
400 0.113909 0.11467 0.11067 0.11771

1000 0.117929 0.11881 0.12059 0.11835
3200 0.120377 0.11835 0.11831 0.11836

(b) Vorticity ω
100 3.16646 3.29898 3.08023 3.30388
400 2.29469 2.31917 2.31133 2.31648

1000 2.04908 2.09925 2.12341 2.10249
3200 1.98860 1.49245 1.88762 2.10410
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Overall, the numerical results obtained for the driven-cavity benchmark problem confirm
the advantages of using the developed high-order formulation. This formulation allows for
achieving monotone accurate numerical solutions on coarser discretizations as compared
to GWS and TWS methods. This preserves the high-order solution trends illustrated for
the model advection–diffusion problem and provides for a better resolution of the interior
of the solution domain. The application of the correction error terms developed herein is
governed by physics of the problem and does not require many knobs and switches to run the
problem.

CONCLUSIONS

A new approach to designing high-order accurate CFD methods has been developed
and tested for a range of problem statements belonging to the incompressible Navier–
Stokes equation system. The systematic construction of progressively higher order spatial
approximations is achieved via a modified equation analysis, which allows one to determine
the computational stencil coefficients appropriate to a desired accuracy order. The resulting
high-order error correction terms are shown to be consistent with theβ term characteristic
of the TWS finite element formulation. This confirms the expected high-order of spatial
accuracy in TWS constructions and provides a highly efficient dispersion error control
mechanism, whose application is based on the specifics of the solution domain discretization
and physics of the problem.

Theoretical development utilizes fundamentals of the finite element weak statement for-
mulation and truncation error analysis to characterize error in the numerical solution pro-
cess. It then offers a computationally inexpensive way of constructing equation-specific
higher order approximations. A distinguishing desirable property of the developed method
is solution matrix bandwidth, which always remains equal to that of the second-order dis-
cretization. This permits combining the computational efficiency of the lower order methods
with superior accuracy inherent in high-order approximations. Generality of the underlying
principles is shown to provide a natural transition of the concepts derived for the one-
dimensional steady-state case to multidimensional and unsteady problems. The perturbed
PDE analysis is further demonstrated to be widely applicable to Navier–Stokes nonlinear
equation law system, with the theoretical development yielding the continuous vector forms
needed for the appropriate error corrections.

Numerical simulations compare performance of the developed method to that of the
GWS and TWS formulations. Uniform mesh refinement convergence results confirm the
order of truncation error for each method. High-order formulation is shown to require
significantly fewer nodes to accurately resolve solution gradients for convection dominated
problems. Benchmark problem applications for the incompressible Navier–Stokes equations
complete the manuscript. In both cases, the developed high-order formulation is shown to
result in more accurate solutions on coarser discretizations, thus preserving the design
trends illustrated for the model advection–diffusion equation. The theoretical development
is therefore complete.
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